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Imaging Life Has Three Sections: Image Acquisition, Image Analysis, and Imaging 
Modalities

The first section, Image Acquisition, lays the foundation for imaging by extending prior knowledge about image struc-
ture (Chapter 1), image contrast (Chapter 2), and proper image representation (Chapter 3). The chapters on imaging by eye 
(Chapter 4), by camera (Chapter 5), and by scanners (Chapter 6) relate to prior knowledge of sight, digital (e.g., cell phone) 
cameras, and flatbed scanners.

The second section, Image Analysis, starts with how to select features in an image and measure them (Chapter 7). With 
this knowledge comes the realization that there are limits to image measurement set by the optics of the system (Chapter 8), 
a system that includes the sample and the light- and radiation-gathering properties of the instrumentation. For light-based 
imaging, the nature of the lighting and its ability to generate contrast (Chapter 9) optimize the image data acquired for 
analysis. A wide variety of image filters (Chapter 10) that operate in real and reciprocal space make it possible to display or 
measure large amounts of data or data with low signal. Spatial measurement in two dimensions (Chapter 11), measurement 
in time (Chapter 12), and processing and measurement in three dimensions (Chapter 13) cover many of the tenets of image 
analysis at the macro and micro levels.

The third section, Imaging Modalities, builds on some of the modalities necessarily introduced in previous chapters, 
such as computed tomography (CT) scanning, basic microscopy, and camera optics. Many students interested in biological 
imaging are particularly interested in biomedical modalities. Unfortunately, most of the classes in biomedical imaging are 
not part of standard biology curricula but in biomedical engineering. Likewise, students in biomedical engineering often 
get less exposure to microscopy-related modalities. This section brings the two together.

The book does not use examples from materials science, although some materials science students may find it useful.

Imaging Life Can Be Either a Lecture Course or a Lab Course

This book can stand alone as a text for a lecture course on biological imaging intended for junior or senior undergraduates 
or first- and second-year graduate students in life sciences. The annotated references section at the end of each chapter 
provides the URLs for supplementary videos available from iBiology.com and other recommended sites. In addition, the 
recommended text-based internet, print, and electronic resources, such as microscopyu.com, provide expert and in-depth 
materials on digital imaging and light microscopy. However, these resources focus on particular imaging modalities and 
exclude some (e.g., single-lens reflex cameras, ultrasound, CT scanning, magnetic resonance imaging [MRI], structure 
from motion). The objective of this book is to serve as a solid foundation in imaging, emphasizing the shared concepts of 
these imaging approaches. In this vein, the book does not attempt to be encyclopedic but instead provides a gateway to the 
ongoing advances in biological imaging.

The author’s biology course non-linearly builds off this text with weekly computer sessions. Every third class session 
covers practical image processing, analysis, and presentations with still, video, and three-dimensional (3D) images. 
Although these computer labs may introduce Adobe Photoshop and Illustrator and MATLAB and Simulink (available on 
our university computers), the class primarily uses open-source software (i.e., GIMP2, Inkscape, FIJI [FIJI Is Just ImageJ], 
Icy, and Blender). The course emphasizes open-source imaging. Many open-source software packages use published and 
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archived algorithms. This is better for science, making image processing more reproducible. They are also free or at least 
cheaper for students and university labs.

The images the students acquire on their own with their cell phones, in the lab (if taught as a lab course), or from online 
scientific databases (e.g., Morphosource.org) are the subjects of these tutorials. The initial tutorials simply introduce basic 
features of the software that are fun, such as 3D model reconstruction in FIJI of CT scans from Morphosource, and infor-
mative, such as how to control image size, resolving power, and compression for analysis and publication. Although simple, 
the tutorials address major pedagogical challenges caused by the casual, uninformed use of digital images. The tutorials 
combine the opportunity to judge and analyze images acquired by the students with the opportunity to learn about the 
software. They are the basis for weekly assignments. Later tutorials provide instruction on video and 3D editing, as well as 
more advanced image processing (filters and deconvolution) and measurement. An important learning outcome for the 
course is that the students can use this software to rigorously analyze and manage imaging data, as well as generate publi-
cation-quality images, videos, and presentations.

This book can also serve as a text for a laboratory course, along with an accompanying lab manual that contains protocols 
for experiments and instructions for the operation of particular instruments. The current lab manual is available on request, 
but it has instructions for equipment at Texas A&M University. Besides cell phones, digital single-lens reflex cameras, flat-
bed scanners, and stereo-microscopes, the first quarter of the lab includes brightfield transmitted light microscopy and 
fluorescence microscopy. Assigning Chapter 16 on transmitted light microscopy and Chapter 17 on epi-illuminated light 
microscopy early in the course supplements the lab manual information and introduces the students to microscopy before 
covering it during class time. Almost all the students have worked with microscopes before, but many have not captured 
images that require better set-up (e.g., Köhler illumination with a sub-stage condenser) and a more thorough under-
standing of image acquisition and lighting.

The lab course involves students using imaging instrumentation. All the students have access to cameras on their cell 
phones, and most labs have access to brightfield microscopy, perhaps with various contrast-generating optical configura-
tions (darkfield, phase contrast, differential interference contrast). Access to fluorescence microscopy is also important. 
One of the anticipated learning outcomes for the lab course is that students can troubleshoot optical systems. For this 
reason, it is important that they take apart, clean, and correctly reassemble and align some optical instruments for cali-
brated image acquisition. With this knowledge, they can become responsible users of more expensive, multi-user equip-
ment. Some might even learn how to build their own!

Access to CT scanning, confocal microscopy, multi-photon microscopy, ultrasonography, MRI, light sheet microscopy, 
superresolution light microscopy, and electron microscopy will vary by institution. Students can use remote learning to 
view demonstrations of how to set up and use them. Many of these instruments have linkage to the internet. Zoom (or 
other live video) presentations provide access to operator activity for the entire class and are therefore preferable for larger 
classes that need to see the operation of a machine with restricted access. Several instrument companies provide video 
demonstrations of the use of their instruments. Live video is more informative, particularly if the students read about the 
instruments first with a distilled set of instrument-operating instructions, so they can then ask questions of the operators. 
Example images from the tutorials for most of these modalities should be available for student analysis.
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Peter Hepler and Paul Green taught a light and electron microscopy course at Stanford University that introduced me to 
the topic while I was a graduate student of Peter Ray. After working in the lab of Ralph Quatrano, I acquired additional 
expertise in light and electron microscopy as a post-doc with Larry Fowke and Fred Constabel at the University of 
Saskatchewan and collaborating with Hilton Mollenhauer at Texas A&M University. They were all great mentors.

I created a light and electron microscopy course for upper-level undergraduates with Kate VandenBosch, who had taken 
a later version of Hepler’s course at the University of Massachusetts. However, with the widespread adoption of digital 
imaging, I took the course in a different direction. The goals were to introduce students to digital image acquisition, 
processing, and analysis while they learned about the diverse modalities of digital imaging. The National Science 
Foundation and the Biology Department at Texas A&M University provided financial support for the course. No single 
textbook existing for such a course, I decided to write one. Texas A&M University graciously provided one semester of 
development leave for its completion.
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This book is accompanied by a companion website:

www.wiley.com/go/griffing/imaginglife

Please note that the resources are password protected.

The resources include:

	● Images and tables from the book
	● Examples of the use of open source software to introduce and illustrate important features with video tutorials on 
YouTube

	● Data, and a description of its acquisition, for use in the examples

About the Companion Website
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1.1  The Pixel Is the Smallest Discrete Unit of a Picture

Images have structure. They have a certain arrangement of small and large objects. The large objects are often compos-
ites of small objects. The Roman mosaic from the House VIII.1.16 in Pompeii, the House of Five Floors, has incredible 
structure (Figure 1.1). It has lifelike images of a bird on a reef, fishes, an electric eel, a shrimp, a squid, an octopus, and 
a rock lobster. It illustrates Aristotle’s natural history account of a struggle between a rock lobster and an octopus. In 
fact, the species are identifiable and are common to certain bays in the Italian coast, a remarkable example of early 
biological imaging.

It is a mosaic of uniformly sized square colored tiles. Each tile is the smallest picture element, or pixel, of the mosaic. At 
a certain appropriate viewing distance from the mosaic, the individual pixels cannot be distinguished, or resolved, and 
what is a combination of individual tiles looks solid or continuous, taking the form of a fish, or lobster, or octopus. When 
viewed closer than this distance, the individual tiles or pixels become apparent (see Figure 1.1); the image is pixelated. 
Beyond viewing it from the distance that is the height of the person standing on the mosaic, pixelation in this scene was 
probably further reduced by the shallow pool of water that covered it in the House of Five Floors.

The order in which the image elements come together, or render, also describes the image structure. This mosaic was 
probably constructed by tiling the different objects in the scene, then surrounding the objects with a single layer of tiles of 
the black background (Figure 1.2), and finally filling in the background with parallel rows of black tiles. This form of image 
construction is object-order rendering. The background rendering follows the rendering of the objects. Vector graphic 
images use object-ordered rendering. Vector graphics define the object mathematically with a set of vectors and render it 
in a scene, with the background and other objects rendered separately.

Vector graphics are very useful because any number of pixels can represent the mathematically defined objects. This is 
why programs, such as Adobe Illustrator, with vector graphics for fonts and illustrated objects are so useful: the number 
(and, therefore, size) of pixels that represent the image is chosen by the user and depends on the type of media that will 
display it. This number can be set so that the fonts and objects never have to appear pixelated. Vector graphics are resolution 
independent; scaling the object to any size will not lose its sharpness from pixelation.

Another way to make the mosaic would be to start from the top upper left of the mosaic and start tiling in rows. One row 
near the top of the mosaic contains parts of three fishes, a shrimp, and the background. This form of image structure is 
image-order rendering. Many scanning systems construct images using this form of rendering. A horizontal scan line is 
a raster. Almost all computer displays and televisions are raster based. They display a rasterized grid of data, and because 
the data are in the form of bits (see Section 2.2), it is a bitmap image. As described later, bitmap graphics are resolution 
dependent; that is, as they scale larger, the pixels become larger, and the images become pixelated.

Even though pixels are the smallest discrete unit of the picture, it does have structure. The fundamental unit of visuali-
zation is the cell (Figure 1.3). A pixel is a two-dimensional (2D) cell described by an ordered list of four points (its corners 
or vertices), and geometric constraints make it square. In three-dimensional (3D) images, the smallest discrete unit of the 
volume is the voxel. A voxel is the 3D cell described by an ordered list of eight points (its vertices), and geometrics con-
straints make it a cube.
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Figure 1.2  Detail from Figure 2.1. The line of black 
tiles around the curved borders of the eel and the fish 
are evidence that the mosaic employs object-order 
rendering.

Figure 1.1  The fishes mosaic (second century BCE) 
from House VII.2.16, the House of Five Floors, in 
Pompeii. The lower image is an enlargement of the fish 
eye, showing that light reflection off the eye is a single 
tile, or pixel, in the image. Photo by Wolfgang Rieger, 
http://commons.wikimedia.org/wiki/File:Pompeii_-_
Casa_del_Fauno_-_MAN.jpg and is in the public domain 
(PD-1996).

http://commons.wikimedia.org/wiki/File:Pompeii_-_Casa_del_Fauno_-_MAN.jpg
http://commons.wikimedia.org/wiki/File:Pompeii_-_Casa_del_Fauno_-_MAN.jpg


Figure 1.4  This famous picture A Sunday Afternoon on the Island 
of La Grande Jatte (1884–1886) by Georges Seurat is made up of 
small dots or dabs of paint, each discrete and with a separate 
color. Viewed from a distance, the different points of color, 
usually primary colors, blend in the mind of the observer and 
create a canvas with a full spectrum of color. The lower panel 
shows a picture of a liquid crystal display on a laptop that is 
displaying a region of the Seurat painting magnified through a 
lens. The view through the lens reveals that the image is 
composed of differently illuminated pixels made up of parallel 
stripes of red, green, and blue colors. The upper image is from 
https://commons.wikimedia.org/wiki/File:A_Sunday_on_La_
Grande_Jatte,_Georges_Seurat,_1884.jpg. Lower photos by L. 
Griffing.

Color is a subpixel component of electronic displays; printed 
material; and, remarkably, some paintings. Georges Seurat (1859–
1891) was a famous French post-impressionist painter. Seurat 
communicated his impression of a scene by constructing his pic-
ture from many small dabs or points of paint (Figure 1.4); he was a 
pointillist. However, each dab of paint is not a pixel. Instead, 
when standing at the appropriate viewing distance, dabs of differ-
ently colored paint combine to form a new color. Seurat pioneered 
this practice of subpixel color. Computer displays use it, each 
pixel being made up of stripes (or dots) of red, green, and blue 
color (see Figure 1.4). The intensity of the different stripes deter-
mines the displayed color of the pixel.

For many printed images, the half-tone cell is the pixel. A half-
tone cell contains an array of many black and white dots or dots of 
different colors (see Figure 1.10); the more dots within the half-
tone cell, the more shades of gray or color that are possible. Chapter 
2 is all about how different pixel values produce different shades of 
gray or color. Figure 1.3  Cell types found in visualization systems 

that can handle two- and three-dimensional 
representation. Diagram by L. Griffing.

https://commons.wikimedia.org/wiki/File:A_Sunday_on_La_Grande_Jatte,_Georges_Seurat,_1884.jpg
https://commons.wikimedia.org/wiki/File:A_Sunday_on_La_Grande_Jatte,_Georges_Seurat,_1884.jpg
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1.2  The Resolving Power of a Camera or Display Is the Spatial Frequency of Its Pixels

In biological imaging, we use powerful lenses to resolve details of far away or very small objects. The round plant proto-
plasts in Figure 1.5 are invisible to the naked eye. To get an image of them, we need to use lenses that collect a lot of light 
from a very small area and magnify the image onto the chip of a camera. Not only is the power of the lens important but 
also the power of the camera. Naively, we might think that a powerful camera will have more pixels (e.g., 16 megapixels 
[MP]) on its chip than a less powerful one (e.g., 4 MP). Not necessarily! The 4-MP camera could actually be more powerful 
(require less magnification) if the pixels are smaller. The size of the chip and the pixels in the chip matter.

The power of a lens or camera chip is its resolving power, the number of pixels per unit length (assuming a square pixel). 
It is not the number of total pixels but the number of pixels per unit space, the spatial frequency of pixels. For example, the 
eye on the bird in the mosaic in Figure 1.1 is only 1 pixel (one tile) big. There is no detail to it. Adding more tiles to give the 
eye some detail requires smaller tiles, that is, the number of tiles within that space of the eye increases – the spatial frequency 
of pixels has to increase. Just adding more tiles of the original size will do no good at all. Common measures of spatial fre-
quency and resolving power are pixels per inch (ppi) or lines per millimeter (lpm – used in printing).

Another way to think about resolving power is to take its inverse, the inches or millimeters per pixel. Pixel size, the 
inverse of the resolving power, is the image resolution. One bright pixel between two dark pixels resolves the two dark 
pixels. Resolution is the minimum separation distance for distinguishing two objects, dmin. Resolving power is 1/dmin. 
Note: Usage of the terms resolving power and resolution is not universal. For example, Adobe Photoshop and Gimp use res-
olution to refer to the spatial frequency of the image. Using resolving power to describe spatial frequencies facilitates the 
discussion of spatial frequencies later.

As indicated by the example of the bird eye in the mosaic and as shown in Figure 1.5, the resolving power is as impor-
tant in image display as it is in detecting the small features of the object. To eliminate pixelation detected by eye, the 
resolving power of the eye should be less than the pixel spatial frequency on the display medium when viewed from an 
appropriate viewing distance. The eye can resolve objects separated by about 1 minute (one 60th) of 1 degree of the 
almost 140-degree field of view for binocular vision. Because things appear smaller with distance, that is, occupy a 

Figure 1.5  Soybean protoplasts (cells with their cell walls digested away with enzymes) imaged with differential interference contrast 
microscopy and displayed at different resolving powers. The scale bar is 10 μm long. The mosaic pixelation filter in Photoshop generated 
these images. This filter divides the spatial frequency of pixels in the original by the “cell size” in the dialog box (filter > pixelate > mosaic). 
The original is 600 ppi. The 75-ppi images used a cell size of 8, the 32-ppi image used a cell size of 16, and the 16-ppi image used a cell 
size of 32. Photo by L. Griffing.
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smaller angle in the field of view, even things with large pixels look non-pixelated at large distances. Hence, the pixels 
on roadside signs and billboards can have very low spatial frequencies, and the signs will still look non-pixelated when 
viewed from the road.

Appropriate viewing distances vary with the display device. Presumably, the floor mosaic (it was an interior shallow 
pool, so it would have been covered in water) has an ideal viewing distance, the distance to the eye, of about 6 feet. At this 
distance, the individual tiles would blur enough to be indistinguishable. For printed material, the closest point at which 
objects come into focus is the near point, or 25 cm (10 inches) from your eyes. Ideal viewing for typed text varies with the 
size of font but is between 25 and 50 cm (10 and 20 inches). The ideal viewing distance for a television display, with 1080 
horizontal raster lines, is four times the height of the screen or two times the diagonal screen dimension. When 
describing a display or monitor, we use its diagonal dimension (Table 1.1). We also use numbers of pixels. A 14-inch mon-
itor with the same number of pixels as a 13.3-inch monitor (2.07 × 106 in Table 1.1) has larger pixels, requiring a slightly 
farther appropriate viewing distance. Likewise, viewing a 24-inch HD 1080 television from 4 feet is equivalent to viewing 
a 48-inch HD 1080 television from 8 feet.

There are different display standards, based on aspect ratio, the ratio of width to height of the displayed image (Table 1.2). 
For example, the 15.6-inch monitors in Table 1.1 have different aspect ratios (Apple has 8:5 or 16:10, while Windows has 
16:9). They also use different standards: a 1920  ×  1200 monitor uses the WUXGA standard (see Table  1.2), and the 
3840 × 2160 monitor uses the UHD-1 standard (also called 4K, but true 4K is different; see Table 1.2). The UHD-1 monitor 
has half the pixel size of the WUXGA monitor. Even though these monitors have the same diagonal dimension, they have 
different appropriate viewing distances. The standards in Table 1.2 are important when generating video (see Sections 5.8 
and 5.9) because different devices have different sizes of display (see Table 1.1). Furthermore, different video publication 
sites such as YouTube and Facebook and professional journals use standards that fit multiple devices, not just devices with 
high resolving power. We now turn to this general problem of different resolving powers for different media.

1.3  Image Legibility Is the Ability to Recognize Text in an Image by Eye

Image legibility, or the ability to recognize text in an image, is another way to think about resolution (Table 1.3). This 
concept incorporates not only the resolution of the display medium but also the resolution of the recording medium, in this 
case, the eye. Image legibility depends on the eye’s inability to detect pixels in an image. In a highly legible image, the eye 
does not see the individual pixels making up the text (i.e., the text “looks” smooth). In other words, for text to be highly 
legible, the pixels should have a spatial frequency near to or exceeding the resolving power of the eye.

At near point (25 cm), it is difficult for the eye to resolve two points separated by 0.1 mm or less. An image that resolves 
0.1 mm pixels has a resolving power of 10 pixels per mm (254 ppi). Consequently, a picture reproduced at 300 ppi would 

Table 1.1  Laptop, Netbook, and Tablet Monitor Sizes, Resolving Power, and Resolution.

Size (Diagonal)
Horizontal × Vertical 
Pixel Number

Resolving Power: 
Dot Pitch ( ppi)

Resolution or 
Pixel Size (mm)

Aspect 
Ratio (W:H) Pixel Number (×106)

6.8 inches (Kindle Paperwhite 5) 1236 × 1648 300 0.0846 4:3 2.03

11 inches (iPad Pro) 2388 × 1668 264 (retina display) 0.1087 4:3 3.98

10.1 inches (Amazon Fire HD 10 e) 1920 × 1200 224 0.1134 16:10 2.3

12.1 inches (netbook) 1400 × 1050 144.6 0.1756 4:3 1.4

13.3 inches (laptop) 1920 ×1080 165.6 0.153 16:9 2.07

14 inches (laptop) 1920 × 1080 157 0.161 16:9 2.07

2560 × 1440 209.8 0.121 16:9 3.6

15.2 inches (laptop) 1152 × 768 91 0.278 3:2 0.8

15.6 inches (laptop) 1920 × 1200 147 0.1728 8:5 2.2

3840 × 2160 282.4 0.089 16:9 8.2

17 inches (laptop) 1920 × 1080 129 0.196 16:9 2.07
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Table 1.3  Image Legibility.

Resolving Power

Legibility Qualityppi lpm

200 8 Excellent High clarity
100 4 Good Clear enough for prolonged study

50 2 Fair Identity of letters questionable

25 1 Poor Writing illegible

lpm, lines per inch; ppi, pixels per inch.

have excellent text legibility (see Table 1.3). However, there are degrees of legibility; some early computer displays had a 
resolving power, also called dot pitch, of only 72 ppi. As seen in Figure 1.5, some of the small particles in the cytoplasm of 
the cell vanish at that resolving power. Nevertheless, 72 ppi is the borderline between good and fair legibility (see Table 1.3) 
and provides enough legibility for people to read text on the early computers.

The average computer is now a platform for image display. Circulation of electronic images via the web presents something 
of a dilemma. What should the resolving power of web-published images be? To include computer users who use old displays, 

Table 1.2  Display Standards.

Aspect Ratio (Width:Height in Pixels)

4:3 8:5 (16:10) 16:9 Various

QVGA

320 × 240

CGA

320 × 200

SIF/CIF

384 × 288

352 × 288

VGA

640 × 480

WVGA (5:3)

800 × 480

WVGA

854 × 480

PAL

768 × 576

PAL

1024 × 576

SVGA

800 × 600

WSVGA

1024 × 600

XGA

1024 × 786

WXGA

1280 × 800

HD 720

1280 × 720

SXGA+

1400 × 1050

WXGA+

1680 × 1050

HD 1080

1920 × 1080

SXGA (5:4)

1280 × 1024

UXGA

1600 × 1200

WUXGA

1920 × 1200

2K (17:9)

2048 × 1080

UWHD (21:9)

2560 × 1080

QXGA

2048 × 1536

WQXGA

1560 × 1600

WQHD

2560 × 1440

QSXGA (5:4)

2560:2048

UHD-1

3840 × 2160

UWQHD (21:9)

3440 × 1440

4K (17:9)

4096 × 2160

8K

7680 × 4320
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the solution is to make it equal to the lowest resolving power of any monitor (i.e., 72 ppi). Images at this resolving power also 
have a small file size, which is ideal for web communication. However, most modern portable computers have larger resolving 
powers (see Table 1.1) because as the numbers of horizontal and vertical pixels increase, the displays remain a physical size 
that is portable. A 72-ppi image displayed on a 144-ppi screen becomes half the size in each dimension. Likewise, high-ppi 
images become much bigger on low-ppi screens. This same problem necessitates reduction of the resolving power of a photo-
graph taken with a digital camera when published on the web. A digital camera may have 600 ppi as its default output reso-
lution. If a web browser displays images at 72 ppi, the 600-ppi image looks eight times its size in each dimension.

This brings us to an important point. Different imaging media have different resolving powers. For each type of media, the 
final product must look non-pixelated when viewed by eye (Table 1.4). These values are representative of those required 
for publication in scientific journals. Journals generally require grayscale images to be 300 ppi, and color images should be 
350–600 ppi. The resolving power of the final image is not the same as the resolving power of the newly acquired image 
(e.g., that on the camera chip). The display of images acquired on a small camera chip requires enlargement. How much is 
the topic of the next section.

1.4  Magnification Reduces Spatial Frequencies While Making Bigger Images

As discussed earlier, images acquired at high resolving power are quite large on displays that have small resolving 
power, such as a 72-ppi web page. We have magnified the image! As long as decreasing the spatial frequency of the 
display does not result in pixelation, the process of magnification can reveal more detail to the eye. As soon as the 
image becomes pixelated, any further magnification is empty magnification. Instead of seeing more detail in the 
image, we just see bigger image pixels.

In film photography, the enlargement latitude is a measure of the amount of negative enlargement before empty mag-
nification occurs and the image pixel, in this case the photographic grain, becomes obvious. Likewise, for chip cameras, it 
is the amount of enlargement before pixelation occurs. Enlargement latitude is

E = R / L, � (1.1)

in which E is enlargement magnification, R is the resolving power (spatial frequency of pixels) of the original, and L is the 
acceptable legibility.

For digital cameras, it is how much digital zoom is acceptable (Figure 1.6). A sixfold magnification reducing the resolving 
power from 600 to 100 ppi produces interesting detail: the moose calves become visible, and markings on the female 
become clear. However, further magnification produces pixelation and empty magnification. Digital zoom magnification 
is common in cameras. It is very important to realize that digital zoom reduces the resolving power of the image. For 
scientific applications, it is best to use only optical zoom in the field and then perform digital zoom when analyzing or 
presenting the image.

The amount of final magnification makes a large difference in the displayed image content. The image should be magnified 
to the extent that the subject or region of interest (ROI) fills the frame but without pixelation. The ROI is the image area of 
the most importance, whether for display, analysis, or processing. Sometimes showing the environmental context of a feature 
is important. Figure 1.7 is a picture of a female brown bear being “herded” by or followed by a male in the spring (depending 

Table 1.4  Resolving Power Required for Excellent Images from Different Media.

Imaging Media Resolving Power (ppi)

Portable computer 90–180

Standard print text 200

Printed image 300 (grayscale)

350–600 (color)

Film negative scan 1500 (grayscale)

3000 (color)

Black and white line drawing 1500 (best done with vector graphics)




